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Abstract—Spun fibersareincreasingly used in telecommunica-
tion systems because their polarization-mode dispersion (PMD) is
lower than that in unspun fibers. In thispaper, weinvestigatetheef-
fectsof aperiodic spin on the PM D of fiber swith randomly varying
birefringence. Numerical simulations show that when the spin pe-
riod isof thesameorder asor larger than thebeat length, themean
differential group delay of a spun fiber depends on the model used
for the random birefringence. We then carry out a general theo-
retical analysis using the second Wai—M enyuk model, which isthe
only model of fiber birefringence to date that is consistent with
polarization optical time domain reflectometry data. Finally, we
consider some particular regimes by means of a perturbative ap-
proach.

Index Terms—Beat length, birefringence correlation length, dif-

ferential group delay, fiber birefringence, polarization-mode dis-
persion (PMD), spun fibers.

|I. INTRODUCTION

ITH theincrease in bit rate and transmission distance of

optical systems, polarization-mode dispersion (PMD) is
becoming one of the most critical challengesfor the deployment
of robust networks [1]. In the last few years, a great effort has
been spent to analyze and propose new techniquesfor PMD mit-
igation. The design and devel opment of PMD compensators for
installed systems| 2], [3] isadifficult task because of therandom
nature of the fiber birefringence. A different approach to PMD
mitigation is to develop low-PMD fibers, which may be done
by spinning a fiber as it is drawn [4]. Some time ago, it was
found that it is more effective to spin fibers periodically as they
are drawn, rather than spinning them at a constant rate [5], [6].
More recently, it was theoretically proven that optimized peri-
odic spin functionsyield adifferential group delay that does not
increase with distance in fibers with deterministic birefringence

[7].
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When one wants to study the effects of a periodic spin, one
must take into consideration four quantities: the beat length
Lg, which is inversely proportional to the mean birefringence
strength; the birefringence correlation length Ly, which de-
scribes the length scale over which an ensemble of fibers with
randomly varying birefringence becomes uncorrelated; the spin
period p; and the spin amplitude Ap. In recent papers, spun
fibers have been studied in special limits, where the analysis
can be simplified. In [7] and [8], the case of a short spin pe-
riod compared with the beat length was considered (p <« Lp).
In[7], [9], and [10], the fiber birefringence was assumed to be
deterministic, corresponding to Ly — oo. Only in [8] was the
random birefringence of real telecommunication fibers consid-
ered, and it was modeled with afixed strength and varying ori-
entation (fixed modulus model, or FMM), in accordance with
the first of the two Wai—Menyuk models [11].

However, many experiments have shown that the birefrin-
gence strength is not fixed. Instead, it varies at random [12], in
agreement with the second Wai—Menyuk model (random mod-
ulus model, or RMM) [11]. In addition, in general, it is difficult
to predict the beat length L g and the correlation length L ¢ of a
fiber. Measurements performed to date show that both Lz and
L canvary over awide range of values, from approximately 1
m up to tens of meters, depending on the fiber type and on the
environmental conditions [13], [14].

As a consequence, there are two topics that should be ad-
dressed. First, it isimportant to characterize the behavior of spun
fibers when the short-period assumption is not satisfied and to
understand in which regimesthe spiniseffectivein reducing the
mean differential group delay (DGD). Second, it is important
to study the behavior of randomly birefringent spun fibers pre-
dicted by the RMM and to understand the differences between
the FMM and the RMM.

The first aim of this paper is to understand whether, and in
which regimes, thetwo models of birefringencelead to the same
mean DGD as in the case of unspun fibers. The second aim is
to obtain as much information as possible of the consequences
of the RMM by performing atheoretical analysis based on this
model. After a brief description of the two physical models
of birefringence, we perform a set of humerical simulations in
order to understand the spin effects as a function of the bire-
fringence (Lg and L) and the spin parameters (Ag and p) for
both models of birefringence. This analysis shows that in some
regimes the two models lead to significantly different results.

We analytically study PMD in spun fibers by means of the
RMM. We obtain an infinite sequence of coupled equationsthat
can be usefully truncated in some cases but that appear to di-
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verge in other cases. in addition, we apply perturbation tech-
niques and show how the introduction of a periodic spin influ-
ences the PMD of arandomly birefringent fiber in the different
regimes when one of the length scales, e.g., the birefringence
correlation length or the spin period, is much shorter than the
others.

II. TwWO MODELS FOR THE BIREFRINGENCE

The evolution along the fiber of the polarization dispersion
vector §(z,w) is governed by the dynamical equation [15]

o z,w)  Of(z,w)
9z  Ow

where w isthe angular frequency, and B(z, w) = (1, B2, B3)7
is the local birefringence vector. For standard telecommunica-
tion fibers 8(~, w) isarandom function of =, whose properties
may be described by appropriate statistical models. | nthispaper,
we consider the two Wai—Menyuk models [11], which are de-
scribed here briefly for completeness.

Both models assume that no circular birefringenceis present,
i.e, B = (B1,52,0)T. This assumption is not restrictive be-
cause the circular birefringence in telecommunication fibers is
negligible[16]. Both models a so assume that only the modulus
of birefringence depends on w, so that we can write 8(z, w) =
b(z,w)B(z), where b(z, ) is the modulus and 3(z) the direc-
tion. We indicate the w derivative of b(z,w) as b,,, and in our
simulations we assume that

bo(z) = Ib(z, w) _ b(z,w) @

dw w

+B(z,w) x Xz w) )

asitiscommonly donein theliterature [11]. Thisassumptionis
not needed for our analysis and does not qualitatively affect the
results.

The second Wai—Menyuk model is the RMM, which de-
scribes 31(z) and (2(z) as independent Langevin processes
[11]

B o
dz pﬁz(z) +0771(Z)7

where 7, (=) and 72(z) are independent Gaussian white noise
processes. As aconsequence, the modulus b(z, w) isaRayleigh
distributed random variable. Parameters p and ¢ define the sta-
tistical propertiesof thebirefringence. In particular, thebirefrin-
gence correlation lengthis L = 1/p, and the beat length reads
Lp =27 /(b*)¥/? = 21, /p/o = /27 /0 5. Please note that the
new parameter o is related to the statistical properties of the
modulus of birefringence by means of (¥*") = h!(203"). Fur-
thermore, in the long-length regime, the mean DGD becomes

11
(Ar(2)) = %wg(z«»:%,/gm 4

where the last equality is obtained using (2).

The RMM is the only fiber model proposed to date that is
consistent with polarization optical time-domain reflectometry
results [12], [17]; however, we will show subsequently that
its analysis is complex. For comparison, we consider also the
FMM, which is ssimpler and provides the same results as the

i=1,2 )
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RMM for the mean DGD in the case of unspun fibers [11].
According to the FMM, the local hirefringence vector is

B(z,w) = b(w) (cos 20(z), sin 20(z), 0) (5)

where 6(z) is a Wiener process, i.e, it obeys the equation
d6/d> = opn(z). In this expression, o is a constant param-
eter, and n(z) is awhite noise process [11]. According to this
model, the birefringence correlation length and the beat length
aeLp = 1/(20%) and L = 2r /b, respectively.

The two modelsthat we have introduced describe the random
evolution of the intrinsic birefringence of a fiber without spin.
When the spin is applied, the local birefringence vector un-
dergoes a rotation. If we define a spin function A(z), i.e, the
angle of therotation imposed on thefiber, then the birefringence
vector of the spun fiber is R3[2A(2)]B(z), where

cos¢p —sing 0
Ri(¢p)=| singp cos¢p O (6)
0 0 1

representsarotation of angle ¢ around the vector (0, 0, 1), As
we aready stated, only periodic spin functions are considered
in this paper, and hereafter p represents the spin period, so that
A(z) isap-periodic function.

I1l. NUMERICAL COMPARISON

In order to analyze the effect of spinning on the DGD of a
fiber, it is useful to introduce the spin-induced reduction factor
(SIRF) [8], which istheratio between the mean DGD of aspun
fiber and the mean DGD that the same fiber would have if it
were not spun, as follows:

(AT(2))
(ATun(2))

where (A7,,(2)) isthe mean DGD of the unspun fiber.

We implement the RMM and the FMM and perform Monte
Carlo simulations solving (1) for a set of 15000 fibers and for
both birefringence models and different values of Lg and L.
For each value of Ly, we consider afiber of length > > 100L
so that the transient behavior has completely died out [18]. We
then estimate the mean DGD, first for the unspun fiber and then
for afiber with the samebirefringence parameters, whichisspun
using the sinusoidal function

SIRF = @

2
A(z) = Agsin <—7rz> .
p

There are four quantities that influence the mean DGD of a
sinusoidally spun fiber—Lg, Ly, p, and Ag. In order to sys-
tematically consider alarge portion of the possible regimes, we
consider thetworatios. p/L g and Ly /Lg. Then, each of these
ratios can be much smaller, of the same order, or much bigger
than one.

We divide the remainder of this section into three parts, cor-
respondingtop/Lp < 1,p/Lg ~ 1,andp/Lp > 1, and for
each of them, we vary the birefringence correlation length and
the spin amplitude. Precisely, we varied L i uniformly from 0.5
m up to 100 m, and A from O rad/m up to 5 rad/m with a step



PIZZINAT et al.: ANALYTICAL TREATMENT OF RANDOMLY BIREFRINGENT PERIODICALLY SPUN FIBERS

SIRF

SIRF

A, [rad]

Fig. 1. Numerical estimates of the variation of the SIRF as a function of spin
amplitude, for a sinusoidal spin function withp = 5 mand Ly = 21.3 m.
Plots () and (b) correspond to the FMM and the RMM, respectively. The solid
curves, from the higher to the lower, refer to L = 1, 2, 5, 10, 20, 50, and 100
m, respectively.

of 0.05 rad/m; in this way, we considered both optimized and
nonoptimized spin functions. In the following, we report the re-
sults obtained only for three pairs of values of p and L g, but
we verified with further simulations that they represent the typ-
ical behavior of the three cases p/Lp <« 1, p/Lp ~ 1, and
p/Lg > 1.

A. First Regime: p/Lp < 1

Wefirst estimate the variation of the SIRF asafunction of the
spin amplitude forp =5 mand Lg = 21 m. For clarity, we
report in Fig. 1(a) and (b) only a subset of the simulations. The
curves, from the upper to the lower, are obtained for Lr = 1,
2,5, 10, 20, 50, and 100 m. Fig. 1(a) corresponds to the results
obtained withthe FMM, and Fig. 1(b) showstheresultsobtained
with the RMM.

We note that there is very good agreement between the two
plots, confirming that the two models of birefringence produce
the same results in the short-period limit. When Lg is very
short, the spin is not very effective in reducing the mean DGD
for both the FMM and the RMM. However, as the correlation
length increases, deep minima are evident in the SIRF plots.
These minima correspond to those obtained in [7], for the case
of polarization maintaining fibers (L — o0). In addition, the
curve that correspondsto Ly = 10 misaready very close to
the curve for Ly = 100 m. This result indicates that a spun
fiber with a birefringence correlation length equal to only 10 m
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Fig. 2. Numerical estimates for the variation of the SIRF with the FMM as
a function of spin amplitude, for a sinusoidal spin function withp = 4 m
and Ly = 4.4 m. Plots (a) and (b) correspond to the FMM and the RMM,
respectively.The solid curves, from the higher to the lower, referto L = 0.5,
1, 2, 3, 6, 16, and 50 m, respectively.

isaready very closeto the deterministic limit and confirms that
when p < Lp, the spin is able to give order to arandomly per-
turbed fiber.

The agreement between Fig. 1(a) and (b) also validates the
expression presented in [8] for the mean DGD of aperiodically
spun randomly birefringent fiber in the short-period limit.

B. Second Regime: p/Lp ~ 1

As asecond case, wefixp =4 mand Lg = 44 m. The
curves in Fig. 2(a) and (b), from the upper to the lower, are
obtained for Ly = 0.5, 1, 2, 3, 16, and 50 m.

Fig. 2(a) corresponds to the results obtained with the FMM,
and Fig. 2(b) reportsthe results obtained with the RM M, respec-
tively. They show that thereis afairly good agreement between
the two models only for the shortest values of L, when the
spin is less effective. On the contrary, as the correlation length
increases, the difference between the two models becomes evi-
dent. In particular, we note that in this regime the SIRF curves
obtained with the FMM in Fig. 2(a) have marked local minima,
whosevaluestend to zero as L  increases. Conversely, the SIRF
curves obtained with the RMM in Fig. 2(b) have local minima
whose values do not tend to zero, even for the largest values
of L, and whose positions do not coincide to those obtained
with the FMM. The difference between the results in these two
models is due to the statistical variation of the birefringence
valueitsalf. If the birefringence strength is fixed in each step of
the fiber, then the spinning may be able to exactly compensate
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Fig. 3. Numerical estimates of the variation of the SIRF with the FMM as a
function of spin amplitude, for asinusoidal spinfunctionwithp = 18 mL g =
4.4 m. Plots(a) and (b) correspond to the FMM and the RMM, respectively. The
solid curves, from the higher to the lower, referto L = 1, 3, 5, 10, 18, 30 and
50 m, respectively.

for it, whereas in the case of randomly varying birefringence
strength, exact compensation is never possible.

C. Third Regime: p/Lp > 1

As athird case, we fix p = 18 mand Lg = 4.4 m. The
solid curves, from the upper to the lower, in Fig. 3(a) and (b)
correspond to the SIRF function for the following values of the
correlation length: Lz = 1, 3, 5, 10, 18, 30, and 50 m.

From Fig. 3(a) and (b), which refers to the FMM and the
RMM, respectively, it can be seen that in this case the spinisnot
effective in reducing the mean DGD. Moreover, the two models
only agree for the shortest values of Lg. Also in this regime,
the main difference between the FMM and the RMM isthat, as
soon as Ly > Lpg, the SIRF has marked minima in the FMM
that do not appear when the RMM is used.

D. Summary of the Comparison

Table | shows the comparison between the FMM and the
RMM in the regimes we have identified. We note that the two
models only consistently agree in the short-period limit.

This result confirms that the formula obtained in [8] for the
mean DGD of aperiodically spun fiber holdswell for both bire-
fringence models when the spin period is shorter than the beat
length. Conversely, when the spin period is of the same order
or bigger than the beat length, the simpler analysis that can be
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TABLE |
COMPARISON BETWEEN THE FMM AND THE RMM

p/Le | Lg/Lp | FMM vs. RMM
<1 Agree
€1 ~1 Agree
> 1 Agree
«1 Agree
~1 ~1 Disagree
>1 Disagree
<1 Agree
>1 ~1 Disagree
>1 Disagree

performed by means of the FMM leadsto amean DGD that dif-
fers significantly from the mean DGD that is obtained with the
RMM. Therefore, the behavior of randomly birefringent, peri-
odically spun fibersdifferssignificantly from the case of unspun
fibers, where the mean DGD is independent of the model used
for the random birefringence [11].

In addition, in Figs. 1-3, we note that the mean DGD of a
spun fiber decreases as L increases, aresult that also differs
from the case of unspun fibers.

Moreover, it has only recently become possible to measure
the local birefringence of optical fibers, and it is even more dif-
ficult to predict its value before drawing a fiber. As a conse-
guence, it is reasonable that a large number of spun fibers may
have a spin period of the same order as or even longer than their
beat length. Therefore, it is necessary to analyze spun fibers
using the RMM.

IV. THEORY ON SPUN FIBERS WITH THE RMM

The analysis of periodically spun fibers using the RMM can
be performed following the same procedurethat was used for the
FMM [8], [19]. We start by transforming the reference framein
order to compensate for both the intrinsic rotation of the bire-
fringence and the rotation induced by the spin, using the ma-
trix T(z) = RI[2(A(z) + 6(2))] [7]. The angle 6(z) in the
RMM is defined in a similar way as in the FMM, i.e., consid-
ering B1(z) = b(2) cos 26(=) and B> = b(z)sin 26(z) for the
unspun fiber. In this case, however, b(z) = (2 + 32)Y/% isa
random process. If we indicate with @, and 8, the polariza-
tion dispersion vector and the birefringence vector in the fixed
reference frame, then the change of coordinate systemisimple-
mented by Q(z) = T(2)Q;(z), and b(z) = T(z)Bs(z). The
dynamical equation in the rotating reference frame can be ob-
tained after calculating the matrix dT/dz; therefore, we must
calculate the z derivative of 8(z) and we find that

dé ol
T ﬁ(ﬁ?ﬁl — ).

Finally, the dynamical equationinthe new referenceframereads

b b/w
/07 = 0 xQ+ | 0
—20 — 0(772/31 — 771/32)/()2 0

(8)
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where «(z) is the » derivative of A(z). The matrix T(z) is
orthogonal so that the modulus of () still equals the DGD.
Equations (8) and (3) form a system of stochastic differential
equations that can be rewritten as

!
Q2
4| q,
dz B
Pa
—/3292 /3192 20692 + %
ﬁggl —/31Q1 —ng - 20{Q1
=5 0 0 <Z; ) + b2 9)
v? 0 —pP1
0 b? —pp2

By means of the theory of stochastic differential equations[20],
we calculate the infinitesimal generator A associated with (9),
and using Dynkin’'s formula, we obtain an equation for the evo-
lution of the mean-square DGD

d(AT?) 2
— = ). (10)
Using Dynkin's formula again, we find
d{bQ2 b2
WY _ ) sy pp
d{bQ
W) _ af) - (o) - (1°03)
d{b?Q
< - 3) _ _ 20(b°Q3) + 20%(Q3) + (b°Qa) .

The iterative application of the generator leads to an infinite
sequence of relationships that can be expressed recursively as

d thQ
< y 3> :2h202<52(h71)93> _ 2ph<52h93> + <52h+192>
A
d<1)2h+191> _ <62(h+1)> + 20_2]7/(]7/ + 1)(()2(h71)+191>
dz w
— (2h 4+ D)pd* Q) + 20 (b*"F10Q,)
d th-l—lQ
< = 2> — 2h(h + 1)02<62(h—1)+192> _ 2a<62h+1Q1>

— p(2h + PP HQ,) — PPV (10)

withinitial conditions (62" Q3) = (b1 Q) = (B?"H1Q) =0
at z = 0forall h.

Before proceding with the analysis, we note that (11) is an
infinite system of equations due to the correlation between the
two variables 52 and €2, If they were uncorrelated, it would be
possible to obtain the same three-dimensional system as was
obtained for the FMM. For unspun fibers, it is reasonable to
assume that these two variables are uncorrelated as was shown
in [21] and is suggested by numerical simulations. Conversely,
numerical simulations show that it is not at al straightforward
to extend this property to the case of spun fibers.

The set of (11) is unlikely to be solved explicitly due to its
evident complexity. To obtain a numerical solution, it must be
possible to truncate the infinite-dimensional system. If the se-
quence that we obtained in (11) does not converge, then trunca-
tion is not possible, and one must solve the original stochastic
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differential equation. We will find that in some cases the se-
quence converges and a numerical solution is possible, but in
other cases, it does not converge.

Wenotethat in (11), theforcing term increases as h! because
(b*"y = hi(20%"). Therefore, it is convenient to introduce a
change of variables; we choose

o 1 2h
w0l 1) = hipigzezyr )

_ 1 2h+1
S TR e ALY

(12)

where we recall that 0% = (b%) = 0% /2p. Using (11), and (12),
we find

w =2p(1 — n,0)yo(z,h — 1)
— 2phyo(z.h) + (h + Lya(z, )
dyi (=, h
L;) =2p(1 = dn0)y1(2,h — 1)
i 20(2,
= (2h+ V)py1(z, h) + 202(2, h) + T
w :2p(1 — 6h70)y2(z, h - 1) - 20491(37 h)
z

—(2h+1)py2(z, h) _20,623(h+1)y0(27 h+1)
(13)

where 6y, ¢ is the Kronecker delta. Equation (13) can be rear-
ranged as follows: we define the vector y(~), whose (3h + n)th
element equalsy,,(z, h) with~ 2 0 andn = 0, 1, 2. According
to (13), y obeys the equation

dy
dz

where A () isa z-dependent infinite-dimensional matrix, and «
isaconstant infinite-dimensional vector, given by (15), shown at
the bottom of the next page. Equation (14) is an inhomogeneous
infinite-dimensional system with periodic coefficients and with
theinitial condition y(0) = 0. We note that (14) is very similar
to the system obtained studying the twist induced circular bire-
fringence in long single-mode fibers [16]. Analogous to what
was reported in [16] and using the same approach, it is possible
to prove that the following properties hold:

Alzyy(z)+u (14)

h

2
Jwozs )] < S7/423)
2h 22
v (z A)] < 27y A(0202)7)
2h
Ju2 (2 )] < G\ ((0P23)") (16)

which state that, as & increases, the modulus of y,,(z; h) de-
creases very quickly. The proof isgivenin the Appendix. More-
over, the elements of A grow linearly with & so that the mod-
ulus of the derivative of y,,(2; h) decreases quickly. Asaconse-
quence, it seems reasonabl e to truncate the recursive equations.
We set y,,(z,h) = O forevery 2 > 0 and forevery 1. > H,
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with H sufficiently large. By means of this approximation, (14)
becomes a system of differential equations of dimension 3H,
which can be numerically integrated. Equation (10) givesan ex-
pression for the growth of the mean-square DGD in terms of
(b€21), which is proportional to 1 (z, 0). Note that even though
we are interested only in the second component (=, 0), we
have to solve the whole system. We a so emphasize that thereis
no guarantee that this truncation will converge as H increases.

We solved the system (14), truncated at various values of
H using both MATLAB and the CVODE differential equation
package[22]. We al so expl oited sparse matrix methods sincethe
matrix is banded with dimension 6. We then compared this so-
Iution for the mean-square DGD with the mean val ues obtained
by Monte Carlo numerical simulations, as described in the pre-
vious section. We used this procedurefor asinusoidal spinfunc-
tion with several values of Lg, Ly, p, and Ag. In genera, the
solution of the truncated system is much faster than the Monte
Carlo simulations, but the truncation does not always converge.
We found that when L approaches or is bigger than L g, trun-
cating the system gives incorrect results.

We have found empirically that the solution of the truncated
system yields correct results with H as small as 20 when both
Ly and p aresmaller or of thesameorder as L g and when Aq is
afew radians.When the spin amplitude is larger, we found that
it is necessary to truncate the system at alarger H.

V. PERTURBATIVE ANALYSIS

The analysis performed in the previous section allows one to
gain partial information on the behavior of spun fibersaccording
to the RMM. Another approach to the problem is to use pertur-
bative methods [23], [24]. These methods are applicable when
one system parameter is much smaller than another, and conse-
quently, we will consider the case of a short spin period and the
case of a short correlation length.

For convenience, we rewrite here the first three equations of
the infinite-dimensional system
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A. Case of a Short Spin Period

We consider the case in which the spin period is shorter than
the beat length and the correlation length. Under this condition,
the leading order terms of the asymptotic expansionsfor (b€2;),
(b2, and (bQ23) are

A1) (%)
AP N T4 90/(50,) (0
dz w +20{b2)
d(b2) O
KT~ sagp)®
2 (0)
% = — 2a(b2;) V. (18)

We note that the first two equations are coupled, and along with
the initial conditions (bQ;)(? = (bQ2,)® = 0 at z = 0, (18)
can be solved by means of variation of parameters. By substi-
tuting

(B () =y (2) sin[2A(2)] + ka(2) cos[2A(2)]
(B20(2)) V= —ky () sin[24(2)]+ k1 (2) cos[2A(2)] (19)

we find thet
() = “;ﬁ /0 T in[24(2)] = “;ﬁs
o(z) = “:uﬁ /0 T cos[24(2)] = “:uﬁc (20)
from which we conclude that
(AT?) = t—?(c’z + 52). (21)

Recalling that (b*) = 203 = 4n* /L%, wefind that (21) coin-
cideswith the expression obtained in this regime with the FMM
[25], confirming the agreement of the two modelsin the case of

d(b) (b)) )
=-— 4 2a(bQda) — p{bQ2
T 5 + 2a{bQa) — p(b21) fast spin.
d(l;(b) =—2a(b) — p(bQ) — (b*3) B. Case of a Short Correlation Length
Z
d(b2Q3) ) ) 5 We analyze by means of the perturbative technique, the
— g, 20 () = 2p(b7) +(B°2) . (17)  regime Lp < Lp, Ly < p, and spin amplitudes of afew ra-
0 0 +1 0
0 —p 2« 0 0 .
0 —2a¢ —-p =205 O 0
+20 0 0 -2 0 42 0
A | O +2 0 0 —3p 42« 0 0o ...
- 0 +2 0 —2a —=3p —402 0 0
0 42 0 0 —4p 0 +3
0 +2p 0 0 —5p 2«
+2p 0 —2a —dp —602 e

u=(0 203/w 0 0 203/(1w) 0 0 203/(2w) 0 ...)7

(15)
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dians. The leading-order equationsin the asymptotic expansion
are

d(b02) @ _ ()
— =L 2p(b)©@
dZ w p< 1>
d(b22)(
—2L = —2p(b2,)
dZ p< 2>
2(2.)(0)
M — _ 2p<bQQ3>(O), (22)
dz
Using the initiad conditions (b2;)©@ = (b)) =
(b?Q3)(0) = 0, the leading-order solution is
2
© _ )0 el
(b€21) 2w [1 — exp(—2pz)]
(92)® =0
(H*Q3) 0 =0. (23)

Substituting the solution for (6 )(®) in the expression for the
mean DGD, we obtain the same solution as for an unspun fiber.
The correction at the next order is

d(bQ;)W
% — p<bgl>(1)
o = = 200000) @ —2p(00) V. (24)

Consequently, at this order, there is no correction to (b€24).
Solving the equation for (b2,)Y, we introduce the spin
function A(z) = Agsin(27z/p), and we obtain

(1 _ 2Aon(t%)
B2+ %)
—exp(—pz)[pv + (1 + p?) sin(vz)]}

where v = 27 /p. Next, the equation for the second-order cor-
rection is

(b822) {vpcos(vz) + 12 sin(vz)

(25)

Q- )(2)
% — —p<bQ1>(2) + 2a<(,g2>(1)
z

and we find
2A312(b%)

b V2 —
(B8h) wp(p® +12)(p* + 41?)

{p*[1 +cos(2v2)] + 412

+2pvsin(2vz) — 2(p*1?) exp(—p2)}.
Finaly, the sum (59:)(? + (6€2;)® can be integrated over
distance to obtain the mean-square DGD, according to (10),
yielding the expression
2Aol/2 )

p?+ 12 (26)

<A72> ~ (Aﬂm2> <1 -
This expression was simplified under the condition z >> L.
Moreover, it coincides with that obtained for the FMM in [25],
and it has the same range of validity. In particular, it can be
noted that the factor in parentheses is always positive under the
conditions Ly < Lp, Ly < p, and the spin amplitudes of a
few radians. In addition, we have verified that if p/(27Ag) 2
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6Lp and p ~ Lp, (26) differs less than 5% from numerical
simulation results. If p < Lg, the error isless than 5% for even
smaller values of p/(2m Ag) with respect to L.

V1. CONCLUSION

We carried out an extensive study of the effects of a periodic
spin on the PMD of randomly perturbed fibers, considering the
two Wai—Menyuk models of random birefringence.

Numerical simulations show that spinning is more effective
in reducing the mean DGD of afiber when its period is shorter
than the beat length. In this case, the two Wai—Menyuk models
yield the same results. Conversely, when the spin period is of
the same order as or greater than the beat |ength, the mean DGD
of aperiodically spun fiber strongly depends on the model used
for therandom birefringence. Thisresult contrastswith previous
results for unspun fibers.

Hence, we carried out a theoretical analysis with the random
modulus model, which is the only model consistent with exper-
imental data. The result of this study is an infinite-dimensional
system of differential equations that can be solved numerically
by truncation and yields the average behavior of the DGD with
less computational time than Monte Carlo simulations when it
converges. However, the truncation does not always converge,
and we found that the system cannot be truncated when L ¢ is of
the same order or greater than L 5. One may object that trunca-
tion works in the same regimes where the RMM and the FMM
do provide the same mean DGD. Yet, we believe that the deriva-
tion of the infinite-dimensional system presented in this paper
isthe starting point for any analytical treatment of periodically
spun fiberswith the RMM, and its knowledge may open the way
to other researchers for a solution of wider validity.

Finally, we studied periodically spun fibers using the RMM
by means of perturbative techniques in the case of a short spin
period and of ashort birefringence correlation length. In both of
these cases, we have been able to find an analytical formulafor
the mean DGD with the RMM.

APPENDIX

Let v and w be two real random variables. By means of the
Schwarz ineguality, it is possible to prove the property

E[vw]’ < E[?]E[w?]. (27)

Applying (27) to y,(z; h), (n = 0, 1, 2), we obtain (16). Here,
we report the demonstration for y(z; 2); the same procedure
can be followed for 1 (2; &) and y2(z; k). We recall that

1

R

90(757 h’) =

As a consequence, we may write
1
yo(z, ]7,)2 = 5 s
(h1)* (203)%"
<1
= (D)t (203)
(2h)H23)

<l)2h Qg>2

b))
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Now we would like to study the behavior of the term
V(2R)!/R12. It is possible to verify inductively that

(2R)! < 2"h! and /(2R +1)! < 2"(h + 1).. More
over the factorial can be approximated using Stirling formula
h! ~ h"/2rhexp (—h) . Hence, we find

(2h)! 2" 1
R'2Z T R! T \/ﬂ(%)h

which tends to zero very rapidly.
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